
CS267 Final Project

Parallelized BVH Construction for Path Tracer

Haohua Lyu
haohua@berkeley.edu

3037443695

Siyu Zhang
c u@berkeley.edu

3037441927

Bingxin Zhang
winizhbx@berkeley.edu

3037444306

1 Introduction & Contributions

Bounding Volume Hierarchy (BVH) is a widely used acceleration structure for detecting potential
object collisions (e.g. ray-triangle intersections). This project is aiming to accelerate the BVH
construction by using GPU to optimize the performance. Our work is based on the CS284A path
tracer [1], so it also involves updating the existing CPU codes to support CUDA parallelism. Our
final solution uses CUDA to implement the BVH construction and improves the performance for
max 40 times faster than the CPU version when running with 600k primitives. We select 15
assets/meshes with different number of primitives and conduct run-time experiments on them. Fig.
1 shows the GPU version run-time performance versus the CPU version. The Config 4 is the version
we have moved all parts to GPU, while Config 2 only have half of the process on GPU. The full GPU
version has the best run-time performance. Moreover, with more primitives in the environment,
more time will be saved by using GPU.

Figure 1: CPU v.s. GPU with 3 different configurations run time performance. GPU Config 4 is
the version which we have moved all parts to GPU. Details see in Table 2.

This report will discuss the algorithm, data structures, CUDA implementations, experiments,
and future work in the following sections.

1



For this project, all members contributed to different parts of the code and the write-up. Specif-
ically, our focuses are:

• Haohua Lyu: implemented GPU multiple versions, ran experiments, and worked on write-up;

• Siyu Zhang: implemented GPU multiple versions, ran experiments, and worked on write-up;

• Bingxin Zhang: ran experiments, and worked on poster and write-up.

2 Algorithm Details

Bounding Volume Hierarchy (BVH) is a structure which is widely used to quickly identity pairs
of potentially colliding 3D objects. While common strategies include top-down and bottom-up
construction, our approach uses a hybrid strategy, building the nodes in a top-down fashion with
Morton code and adding the bounding boxes from leaves to root. This technique, involving the use
of Morton codes, is often called Linear BVH (LBVH). Fig. 2 shows an example of a LBVH tree.
The time complexity of this approach is O(n) [2] [3].

Figure 2: BVH Sturcture [4].

Generally, we build the BVH tree in 4 steps:

1. Calculate Morton code for all primitives, based on their spatial locations;

2. Sort Morton code as binary numbers;

3. Build internal nodes based on Morton similarity in a top-down fashion;

4. Parallel reduction by summing up bounding boxes.

The first step is to calculate the Morton codes, which can be calculated by the 3D point’s
binary fixed-point representation of its coordinates. We take the fractional part of the coordinates
and expand it by inserting two “gaps” after each bit. Then we interleave the bits of the three
coordinates together to form a single binary number [4]. After calculating Morton codes, we sort
the codes at the second step. The detailed kernel implementation is further discussed in Sec. 3.2.

Once the codes are sorted, we build the internal nodes in a top-down fashion. The nodes will
be generated using BFS method, and we build the hierarchy as shown in Fig. 2. Then the final
step is to summing up the bounding boxes after the hierarchy has been built. We need to assign
the bounding box for each of the nodes and sum up them to perform the parallel reduction.

2



3 Data Structure and Implementations

In this section, we discuss the implementation details of the aforementioned algorithm. We first
walk through the data structures used in the project, specifically the two types of nodes used across
CPU and GPU. We then discuss the use of CUDA kernels and features. We also discuss certain
roadblocks we encountered when implementing the algorithm.

We build our project using the CS284A Path Tracer project [1], which is capable of physics-
based rendering. Once the project is executed, it would read models as a list of primitives (i.e., basic
shapes like triangles) and pass it to the BVH constructor. In the original CPU implementation,
the BVH constructor would build a BVH tree with the struct BVHNode and pass the tree to the
path-tracing renderer for quick ray-object intersection detection.

In our implementation, we follow the four steps discussed in Sec. 2 when entering the BVH
construction stage. We use the class LBVHTreeBuilder with the struct LBVHTreeNode to build a
LBVH tree, with simplified data structures for reduced memory transfer and easy access on GPU.
The construction can be performed either on CPU or GPU, and difference is further experimented
and discussed in Sec. 4.2.1. Finally, we convert the LBVH tree back to a BVH tree to match the
original API.

3.1 Data Structure

We discuss specific data structures used in our project, as well as challenges encountered when using
these data structures with separate compilation.

3.1.1 BVH node and LBVH node overview

In an abstract level, nodes in a BVH tree should include the following pointers:

1. A list of all primitives contained in the node;

2. an axis-aligned bounding box surrounding all primitives in the node;

3. the parent of the node;

4. and the left and right children of the node.

In the original CPU implementation, the BVH tree is built with the struct BVHNode. Note that
many passes of the primitives are required, and the list of primitives do not change. Hence, instead
of each node storing the primitives’ data, BVHNode only stores two iterators start (inclusive) and
end (exclusive) to iterate through a shared main list of primitives in a given range. The bounding
box is stored as a bbox struct, which contains the two Vector3D points defining the bounding box
and the extent (difference) between them. Finally, three BVHNode pointers provide references to
root, left child, and right child respectively.

To minimize the memory transfer between CPU and GPU and facilitate access on GPU, we
design the LBVHTreeNode struct with different data structures. First, since host memory addresses
are not available on GPU, we change all pointers to indices of specific arrays, and pass those arrays
to the GPU. That is, we have arrays of primitives and nodes and store integer indices of primitives
and nodes that pointing to array positions. This also reduce the total memory size being passed
between host and device. Once the LBVH tree is built on the GPU, they are passed back to host
and reconstructed to a BVH tree by reassigning the memory pointers.

3



3.1.2 Struct in CPU and GPU

When implementing the data structures, we find that the reconstructed BVH tree has invalid
memory locations loaded in the nodes. Specifically, we observe that the children node addresses
are off by 24 bytes when the node is being accessed inside a .cu file and inside a .cpp file. By
further looking into the BVHNode struct, we find that the struct starts with a bbox and then with
the memory addresses followed. That is, we find the size of the bounding box is differed on .cpp

and .cu files by 24 bytes.
Looking deeper inside the bounding box, it contains three Vector3D points, which are the two

3D points in the opposite corners of the bounding box and the extent (difference) between the two
points. Each of the Vector3D point contains three double representing the x, y, z coordinates. By
comparing its size inside the .cpp and .cu files, we find that a Vector3D struct is 24 bytes in a .cu

file, but 32 bytes in a .cpp file. Since there are three Vector3D inside the bounding box, it creates
the 24-byte offset.

We eventually realize that the difference is caused by the separate compilation of C++ and
CUDA code. The .cpp files are compiled using MSVC on a Windows platform, while .cu files are
compiled by NVCC. On MSVC, the Vector3D struct is aligned to 16 bytes by MSVC, potentially
because of compiler optimization for AVX (YMM) registers on modern CPUs. Thus, although the
three doubles only take 24 bytes, the struct takes 32 bytes when compiled by MSVC. NVCC does
not have such features, so the struct size is still 24 bytes. This difference results in the offset on the
memory addresses.

This issue is resolved by adding macros to force alignment to 16 bytes on both compilers. For
NVCC, this is done by calling __align__(16); for MSVC, we add the alignas(16) call to enforce
the alignment as well.

3.2 CUDA Implementations

Most calculation on GPU is done through CUDA kernels. To add CUDA support, we include two
additional files: lbvh.h and lbvh.cu, as well as code across different files supporting conversion
between LBVH and BVH trees. New CUDA functions and kernels are mostly implemented inside
lbvh.cu; they are briefly introduced below, in the sequence of their orders in the pipeline.

• The getRootBBox function iterates through the list of primitives and combine their bounding
boxes to obtain the root bounding box, which is the total space occupied by the asset. This
space is later further split into smaller boxes for Morton code calculation. In this step, we
utilize thrust::reduce from the Thrust library and use a lambda expression to pass in the
basic operation (i.e., combining two bounding boxes to get a larger one). The GPU cores
perform the reduction on all primitives simultaneously.

• The calculateMortonCode function calls the calcMortonCodeAndInitPrimIdx kernel, which
takes in a primitive and calculate Morton code based on its relative position in the total space
calculated earlier. Again, the GPU cores run the kernel on all primitives simultaneously and
put the Morton code into an array.

• The sortMortonCode function sort the calculated Morton code to put spatially near primitives
in close index positions. This function utilizes thrust::sort_by_key to perform radix sort
on the primitive indices, the morton code, and the bounding box indices simultaneously.

• The processInternalNode kernel splits a given range of primitives, prepares child nodes, and
records the parent-child relationships. The GPU cores run the kernel on the root node and

4



corresponding new nodes in a top-down fashion.

• The calculateBoundingBox kernel takes the list of nodes as inputs and calculate the bounding
boxes of leaf and internal nodes. The GPU cores run the kernel on the leaf nodes and then
their parent internal nodes in a bottom-up fashion.

For most of these functions, we also implement a CPU version to allow better debugging and
comparisons. This allows us to have different configurations, with the pipeline partially or fully
running on GPU. The configurations are further discussed in Sec. 4.2.1.

4 Experiments

In this section, we discuss our experiments and analyze our CUDA implementation of BVH construc-
tion in terms of both run-time/speed and quality of the resulting BVH trees (i.e. how much does it
improve the rendering time for the path tracer). We firstly reason our choices of assets/meshes for
the following experiments, and then compare the CPU version with different configurations of GPU
implementations throughout the project (See Sec. 4.2.1). In Sec. 4.2.2, the run-time breakdown
of the fastest implementation would be analyzed, whereas the quality of implementation would be
evaluated in Sec. 4.2.3.

4.1 Assets/meshes Choices

There are 15 different assets/meshes (See their mesh structures in the Appendix B) chosen as the
rendering target in our following experiments. The target object is loaded through a DAE file
(stands for Digital Asset Exchange file format) and processed by the path tracer. The meshes all
consist of triangles as primitives and the number of primitives ranges from ~2500 to 600K (See
Table 1). Meanwhile, each mesh is simply one object in the scene (limited by the load ability of
the exiting CPU path tracer) and the camera is positioned right in front of each (See Appendix B).
Nevertheless, this wide covering range of the number of primitives is good enough to analyze the
performance of our implementation. Besides the variety in the number of primitives which can be
understood of the problem size, this set of assets also covers the variety in spatial distribution. In
other words, some of the meshes spatially cluster together, while some of them consist of triangles
that are located spread out a certain space. This property of assets would, to some extent, affect
the speed of BVH construction and the quality of the final BVH tree, which would be discussed in
Sec. 4.2.1.

4.2 Performance Analysis

In this section, we present several experiments and plot to analyze the performance of our CUDA
implementation of BVH construction. The run-time comparison and breakdown experiments are
run on a Windows 11 system with an Intel Core i7-11800H CPU and an NVIDIA GeForce RTX
3080 Laptop GPU (8G VRAM and 6144 CUDA Cores). In an overview, both the run-time of BVH
construction and the quality of the final BVH tree show a good performance. The GPU BVH
construction is at most 40 times faster than the CPU version if we do not take into account the
overhead of CPU-GPU memory exchange in such a hybrid mode. The experiments below are all
conducted under the setting of NUM_THREADS = 1024. This number is chosen because 1024 is the
maximum compute work group invocations or maximum number of threads per block for the device.

5



File/mesh names # of primitives

teapot.dae 2,464
cow.dae 5,856
beetle.dae 7,558
bunnyNoBox.dae 30,338
bunny.dae 33,696
peter.dae 40,018
maxplanck.dae 50,801
beast.dae 64,618
lucy.dae 100,000
dragonNoBox.dae 100,000
dragon.dae 105,120
tyra.dae 200,000
armadillo.dae 212,574
wall-e.dae 240,326
happyBuddha.dae 600,000

Table 1: 15 experiment assets and its corresponding number of primitives (triangles).

4.2.1 Run-time Comparison Among Different Implementations

There are four different implemented configurations throughout the project, which is specified in
Table 2. In later experiments and plots, they are presented in the form of its configuration number
(e.g. Config 1). The descriptions for the configurations below are based on the four steps we
discussed in Sec. 2, but it should be mentioned that root bounding box computation is a sub-
task in the 1st step of the algorithm. Step 1 of the algorithm consists of two main parts: root
bounding box computation and other bounding boxes computation. We parallelize the two parts
in different configurations. In Config 2, both parts are on CPU; in Config 3, bounding boxes of all
nodes except the root node is calculated through a GPU kernel launch; in Config 4, bounding box
of the root is computed by using thrust::reduce which was discussed in Sec. 3.2.

root bbox
computation
on GPU

other nodes
bbox computation

on GPU

sort
Morton code
on GPU

Tree
Construction

on GPU

Config 1

Config 2 ✓
Config 3 ✓ ✓ ✓
Config 4 ✓ ✓ ✓ ✓

Table 2: Configuration number and demonstration of whether the sub-task are implemented on
GPU (if no ✓, it means on CPU)

Before starting analyzing the experiment results, it should be mentioned that, in the figures
below, CPU and GPU memory exchange overhead is not taken into account in calculating the total
run-time nor the run-time speed up (Config1 run-time / Config4 run-time). This is mainly
due to the following two reasons. Firstly, all computations of the original path tracer are computed
on CPU, including the interface design for visualizing the BVH tree and the traversal operations
during the ray-tracing stage. In other words, if we finish constructing a BVH tree on GPU, we need

6



to convert it into the correct the CPU version to be correctly visualized and traversed. Therefore,
this portion of time should not be taken into account. Secondly, this project focuses on constructing
a BVH tree on GPU with a parallelized algorithm and the memory exchange should not be taken
into account as, in reality, a parallelized BVH construction would be used in a GPU-based path
tracer which would not have such overhead.

In Fig. 1 and Fig. 5, we can qualitatively and quantitatively evaluate our implementations and
conclude that Config 4 implementation shows a significant run-time speed up ranging from 2.3 to
40, compared with the CPU version (Config 1). It is also the same to state that, compared with our
serial version of BVH construction on CPU, the run-time of our full GPU implementation (Config
4) is at most 40 times faster with the given experiment assets. Meanwhile, as can be seen in Fig.
3, the run-time of both CPU and GPU implementations increases almost linearly with the number
of primitives which is reasonable and correspondent with what we discussed in Sec. 2.

Figure 3: Config 4 GPU Run-time vs. # of Primitives

However, as can be noticed in Fig. 5 and Appendix A, the speed up of Config 4 drops when
the problem size (the number of primitives) is very small (e.g. teapot.dae and cow.dae) and they
are even lower than Config 2 and Config 3 in some experiment assets. Also, even if the numbers of
primitives of two assets are the same (e.g. lucy.dae and dragonNoBox.dae), they show a slightly
different run-time in some sub-tasks. These two phenomena that we observed from the run-time
experiments would be reasoned in the following perspectives: the number of primitives and the
spatial distribution of primitives.

Figure 4: Config 4 GPU Run-time Breakdown

7



Figure 5: Table of run-time of Config 4, its corresponding sub-task run-time and overall speed up
compared with Config 1

Number of Primitives The run-time speed up is smaller when dealing with assets with fewer
number of primitives, especially for Config 4 (See Fig. 4, Fig. 5 teapot.dae and cow.dae). This
is mainly due to the overhead of kernel launches. It experiences a diminishing return in using
parallelized method to get the bounding box of the root node, for instance, comparing Fig. 5 and
9. This is same as saying that probably Config 3 is a better choice when the number of primitives
in the scene is smaller than a threshold (around 8,000 triangles in this case). Thus, the benefits
brought by the parallelism is compromised by the kernel launch overhead when the problem size is
small.

Spatial Distribution of Primitives In this section, we focus on these two assets lucy.dae and
dragonNoBox.dae (See them in Appendix B) which have the same number of primitives (100,000)
but show slightly distinct run-time speed up under both Config 3 and Config 4. This is caused
by the different spatial distribution of the two meshes. Compared with lucy.dae, the triangles of
the dragonNoBox.dae are spatially closer to each other, resulting in relatively similar Morton code
values, and leading to a shorter sorting time on GPU using parallelized radix sort. Meanwhile, it
would also cause a less-balanced tree if the primitives are partially clustered or show a wider range
of spatial distribution, causing lower run-time performance in GPU construction when trying to
build the structure from sorted Morton code.

Overall, smaller number of primitives would, to some extent, compromise the benefits brought
by the parallelization due to kernel launch overhead, whereas the spatial distribution of primitives
would slightly affect the sorting and construction time.

4.2.2 Run-time Breakdown

We also conduct a run-time breakdown analysis on Config 4 with the happyBuddha.dae because
it owns the largest number of primitives in our dataset. For this analysis, we use NVIDIA NSight
Compute because the device uses CUDA 11.5 and another profiler tool nvprof is not supported on
devices with compute capability 8.0 and higher.

8



Figure 6: Config 4 GPU Run-time Breakdown

As discussed in Sec 3.2, there are five essential functions for Config 4 implementation, including
getRootBBox, calculateMortonCode, sortMortonCode, processInternalNode, and
calculateBoundingBox. Each of them either calls a kernel function or itself is a kernel function.
According to the profiling run-time summary provided by NSight Compute, we can get this pie
chart representing the run-time breakdown of Config 4 (See Fig. 6). As can be seen, the function
sortMortonCode accounts for more than half of the total run-time. This result also helps to explain
why the run-time increases as the number of primitives is larger. The percentages of function
getRootBBox and function calculateMortonCode are similar because both of them traverse through
all the bounding boxes of primitives.

Float and Double Object Selection When profiling Config 4, we also notice an interesting
result from NSight Compute (See Fig. 7). This graph shows that the FP64 usage is quite high
in function calculateBoundingBox. FP64 is the highest-utilized pipeline (86.3%). It executes
64-bit floating point operations. The pipeline is over-utilized and likely a performance bottleneck.
Also, there is also a warning suggesting that the ratio of peak float (FP32) to double (FP64)
performance on this device is 64:1. In other words, FP64 efficiency on this device (NVIDIA GeForce
3080 Laptop) is worse than FP32, and it is a general case for NVIDIA gaming graphics cards.
Indeed, we notice this property of the device. And in order to reduce the effect, in the function
calculateBoundingBox, we convert each Vector3D (3 doubles representing the 3D position) into
floats and then do the calculation to get the Morton Code of each primitive. This conversion (from
double to float), in fact, takes a large amount of time. Although this could be solved better if we
use float in all functions and data, it would be a bit out of the scope of this project. In addition,
it could possibly cause other issues if changing all data types from double to float. But it could be
potential future work instead.

9



Figure 7: Screenshot of the FP64/32 Utilization analysis of ”calculateBoundingBox” from NSight
Compute Profiler

4.2.3 Improvement on Rendering Run-time

Additionally, we want to understand the quality of the GPU-built BVH tree as it is built differently
compared to the CPU-built version. The quality of a BVH tree refers to its ability to reduce ray-
object intersection checks (while ensuring correctness); the fewer checks the program performs, the
faster the rendering is. Hence, we render several scenes with a CPU-built tree and a GPU-built tree
to understand the difference; smaller rendering time will indicate higher quality.

The quality of a BVH tree is highly dependent on the scene itself, including the lighting and
assets. Hence, we find the performance varies a lot with assets in our dataset. Nonetheless, we
generally observe similar or improved quality, ranging from no speed up to around 20%. In the best
case, when rendering CBbunny.dae, the GPU version (Config 4) takes 79.6023 seconds to render
when the CPU version (Config 1) takes 100.0016 seconds; a 20.399% reduction in rendering time.
Thus, we find our GPU approach produces BVH trees with similar or even higher quality. Note
that although our CPU implementation is not using state-of-the-art techniques like surface area
heuristics (SAHs) for higher quality, these techniques are expected to take much more time to run.
Hence, our approach may show a better speed advantage when comparing to a CPU version with
better quality. It then falls to the user’s discretion to consider the trade-off between speed and
quality.

5 Impact and Future Work

To conclude, our GPU-based BVH construction implementation improves the efficiency of the
CS284A Path Tracer. We not only achieve 40 times faster run-time in BVH construction but
also improve the quality of the resulting BVH tree for the ray-tracing stage by around 20% on the
selected scene. In addition, we also find that GPU shows greater advantages in building BVH trees
when the number of primitives is large. This could lead to another possible direction for future
work, where we could develop an adaptive configuration and run only selected parts of the pipeline
on GPU depending on the number of primitives in the scene. Last but not lease, we find that, when
designing a new path tracer for running on gaming graphics cards, using float data type instead of
double could be a better choice in computational efficiency.

10



References

[1] CS184 Staff, “Cs184 assignment 3-1 spring 2022.” [Online]. Available: https://cs184.eecs.
berkeley.edu/sp22/docs/proj3-1

[2] C. Apetrei, “Fast and simple agglomerative lbvh construction,” in TPCG, 2014.

[3] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, “Fast BVH Construction
on GPUs,” Computer Graphics Forum, 2009.

[4] “Thinking parallel, part iii: Tree construction on the gpu,” Aug 2020. [Online]. Available:
https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/

Appendix A Running Time Data

Figure 8: Table of run-time of Config 2, its corresponding sub-task run-time and overall speed up
compared with Config 1

Figure 9: Table of run-time of Config 3, its corresponding sub-task run-time and overall speed up
compared with Config 1

11

https://cs184.eecs.berkeley.edu/sp22/docs/proj3-1
https://cs184.eecs.berkeley.edu/sp22/docs/proj3-1
https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/


Appendix B Mesh Views

Figure 10: Mesh view: teapot.dae (2,464 primitives)

Figure 11: Mesh view: cow.dae (5,856 primitives)

Figure 12: Mesh view: beetle.dae (7,558 primitives)

12



Figure 13: Mesh view: bunnyNoBox.dae (30,338 primitives)

Figure 14: Mesh view: bunny.dae (33,696 primitives)

Figure 15: Mesh view: peter.dae (40,018 primitives)

13



Figure 16: Mesh view: peter.dae (50,801 primitives)

Figure 17: Mesh view: beast.dae (64,618 primitives)

Figure 18: Mesh view: lucy.dae (100,000 primitives)

14



Figure 19: Mesh view: dragonNoBox.dae (100,000 primitives)

Figure 20: Mesh view: dragon.dae (105,120 primitives)

Figure 21: Mesh view: tyra.dae (200,000 primitives)

15



Figure 22: Mesh view: armadillo.dae (212,574 primitives)

Figure 23: Mesh view: wall-e.dae (240,326 primitives)

Figure 24: Mesh view: happyBuddha.dae (600,000 primitives)

16


	Introduction & Contributions
	Algorithm Details
	Data Structure and Implementations
	Data Structure
	BVH node and LBVH node overview
	Struct in CPU and GPU

	CUDA Implementations

	Experiments
	Assets/meshes Choices
	Performance Analysis
	Run-time Comparison Among Different Implementations
	Run-time Breakdown
	Improvement on Rendering Run-time


	Impact and Future Work
	Running Time Data
	Mesh Views

